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DETECTION OF ECOLOGICAL DISTURBANCES TO
SEABED FAUNA THROUGH CHANGE OF WEIGHT

DISTRIBUTION

Mayumi Naka*, Ritei Shibata* and Ross Darnell**

The effect of trawling on seabed fauna in the Northern Prawn Fishery experi-
mental region of Australia is investigated through distributional changes in individ-
ual weights for each species. A stochastic growth model is employed to overcome
a limited number of effective observations. One statistical challenge is to deal with
non-identically distributed observations as only total weights and numbers of indi-
viduals caught for each species are observed. A modified Cramér-von Mises statistic
is introduced and the p -values are evaluated by random number generation. As a
result, the gamma distribution, the equilibrium distribution of the stochastic growth
model fits well to 57 out of 80 cases before trawling. We conclude that most of the
species are unaffected by trawling but several other species are shifted towards lighter
weights. The unevenness of the effect over regions suggests that other environmental
effects and ecological factors are involved.

Key words and phrases: Cramér-von Mises statistic, gamma distribution, stochastic
growth model.

1. Introduction

Effects of various methods of harvesting the sea have been investigated in
many articles on marine ecology. Collie et al. (2000) carried out a meta-analysis
of 39 published fishing impact studies to draw general conclusions. Bishop et al.
(2000) investigated the impact of technology on vessel performance in a trawl
fishery during 1988–96 by using a generalized estimating equation. Burridge et
al. (2003) investigated trawl-depletion rate for benthic fauna in an area closed
to commercial trawling. In this paper we detect the effect of trawling through
changes of weight distribution, the equilibrium distribution of a stochastic growth
model. The stochastic growth model is frequently used for modelling population
size (Russo et al. (2009)) or size of plants (Rupsys and Petrauskas (2007)) or
animals (Tovar-Ávila et al. (2009)). It is shown that the equilibrium distribu-
tion of the model fits well as a reference distribution when no effective ecological
disturbance exists. This result allows us to detect any effective disturbance by
departure from the gamma distribution identified before the disturbance. The
reason why we focus on individual weight as an index of disturbance in this
paper is that it is sensitive to any ecological disturbances and easy to measure
compared to size. An advantage of our approach is to be able to draw a whole
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picture of the current status of each species on seabed before and after trawl-
ing without introducing any particular estimating equation or indices. The data
used in this paper is that obtained in the project “Quantifying the effects of
trawling on seabed fauna in the Northern Prawn Fishery” in Australia, which
will be explained in detail in Section 2. Exhaustive analyses of the data were al-
ready reported in Haywood et al. (2005). After calculating various fundamental
statistics and drawing many graphs and maps, they tried to find out the effect of
trawling by application of a simple depletion and recovery model. Unfortunately
it does not seem successful. There are several reasons why their analysis was not
successful. One is that it is a class by class analysis, using popular descriptive
statistics and plots. Our result shows that class by class analysis is too coarse to
detect any effect of ecological disturbances. Instead we detect such disturbances
by building up species by species stochastic growth models. Another reason is
that their analysis is based on the whole weight of each species caught, nor-
malised by the dredge area. The biomass density is a useful abundance measure
for each survey area from the view point of fishery but not so for the detection
of ecological disturbances. Changes of individual weight would be more useful
for detecting ecological disturbance. Then, we detect it in this paper by fitting a
stochastic growth model for individual weight. A technical problem which arises
in analysing unnormalised weight with the number of catches of each species is
that we have to deal with non identically distributed variables. This does not
cause any serious problem in parameter estimation but requires a modification of
the goodness of fit test statistic, most of which are proposed for i.i.d. (indepen-
dent and identically distributed) observations. We evaluate p-values of a modified
Cramér-von Mises statistic by executing computer simulations around the maxi-
mum likelihood estimate since even the asymptotic distribution is unknown. The
stochastic growth model is introduced in Section 3 and a gamma distribution is
derived as a stationary distribution for the weight. Distribution before trawling
is identified in Section 4. The effect of trawling is detected through change of
distribution in Section 5. Comparison with Welch’s T test is given in Section 6.

2. Seabed fauna in Northern Prawn Fishery and data

The data is from the Fisheries Research and Development Corporation
(FRDC) funded Project 2002/102, “Quantifying the effects of trawling on seabed
fauna in the Northern Prawn Fishery” (NPF) in Australia. The project was orig-
inally identified as a high priority research area by the Northern Prawn Fishery
Management Advisory Committee (NORMAC) because under the Environmen-
tal Protection and Biodiversity Conservation Act (EPBC Act), Australian fish-
eries are required to demonstrate their environmental sustainability. Industry
offered special funding to support the research and the FRDC was asked to
manage the project. The Commonwealth Scientific and Industrial Research Or-
ganisation (CSIRO) agreed to carry out the work, develop the scope of the work
and the experimental design and contribute to the funding.

Trawlers in the NPF tend to concentrate their fishing on areas of higher
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Table 1. Part of the data.

Region Plot Treatment Time Scientific name Count Weight (g)

East 12 4 Before Retiflustra cornea 1 0.25

East 12 4 Before Melaxinaea vitrea 1 9.16

East 12 4 Before Tubeworm OPNO 006 14 2.28

East 12 4 Before Neritidae OPNO 142 0 0

East 12 4 Before Leucosia whitei 1 1.49

Figure 1. Two regions near Mornington Island used for the experimental survey (Haywood et

al. (2005)).

prawn density. Also intensive trawling of small areas is a feature of the tiger and
endeavour prawn fishery. Around 20% of the catch is prawns but the rest are
animals collected from the seabed. Such by-catch animals can be seen in Table 7,
although those are not caught by trawling but by experimental dredges.

Table 1 shows part of the data, which consists of 207,726 records, obtained
by the experimental dredge survey for an explanation of the data structure.
The first column labelled Region, indicates the region where the experiment was
performed. The survey area shown in Fig. 1 is roughly divided into two regions,
East (East of Mornington Island) and West (West of Mornington Island); three
plots are set in each region, Plots 3, 5 and 6 in the West and Plots 9, 10, and 12 in
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the East. Geographical features of the seabed of East and West are different; East
is deeper but West is rougher and harder acoustically (Haywood et al. (2005)).
Such a difference suggests the need of separate analyses for the East and West
regions. At each plot, three levels of experimental trawlings (Treatments) were
repeated three times. The three levels are the intensity of trawling, 0, 4, and 20,
and the number of repeated trawlings on each plot. The trawled sea bed were
dredged immediately after, or 6, 12 or 18 months after trawling as well as before
trawling, indicated by the variable Time. Scientific Name is the name of the
species caught by each dredge and Count is the number of individuals of each
species caught in each trawl. Weight is the total weight of each case in grams.

Although the primary aim of the survey was to investigate the effect of dif-
ferent levels of trawl intensity and recovery time, we will concentrate on whether
the effect of trawling is significant, since the number of effective observations is
not large enough for a detailed analysis because of the large number of empty
catches. Therefore, in this paper the treatment levels 4 or 20 are combined,
and the weights recorded immediately after trawling are used for analysis in
contrast with the weights before trawling. Although some useful information
might be lost by combining those levels, it is a trade-off between the number
of effective observations and the sharpness of the result. We may satisfy our-
selves if the effect of trawling were detected in a systematic manner. Although
778 species were observed in this survey, only 16 classes of species were con-
sidered for analysis as there were too many zero catches for the other classes.
Furthermore, 5 of the 16 classes are not appropriate for analysis. Demospongiae
is hard to count since they are colonial, Pisces can easily escape from dredging
and trawling, and Phaeophyta, Liliopsida and Chlorophyta are fragile plants dif-
ficult to collect intact. Eleven classes remained for our investigation: Hydorozoa,
Anthozoa, Gymnolaemata, Polychaeta, Bivalvia, Gastropoda, Asteroidea, Ophi-
uroidea, Echinoidea, Crustacea and Ascidiacea. As a result 76 species remained
in those classes for analysis, but we also removed those species with observations
of less than 5, while the maximum number of observations for each case is 27
before trawling and 18 after trawling. We will report elsewhere other analyses of
the data, for example, the number of individuals caught.

3. Weight distribution

3.1. Stochastic growth model and the equilibrium distribution
Richards (1969) shows that many of the deterministic growth models modify

the relative growth rate (1/X)dX/dt,

dXt

Xt
= f(Xt)dt

where f(Xt) is a function of the animal weight Xt at time t. An example of a
deterministic model is the logistic,

dXt = ρXt(κ−Xt)dt(3.1)
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where κ is the growth limit and ρ is an exponential rate constant. It is one of
the well known models for population growth (Davidson (1938), Smith (1963)),
probably first proposed by Verhulst (1838). This model has since been used for
describing many other aspects of growth other than that related to the popula-
tion, for example, Marubini et al. (1972) analysed the growth of boys’ and girls’
heights.

We introduce a stochastic growth model for the individual’s weight for each
seabed fauna species at time t,

dXt = rXt

(
1 − Xt

k

)
dt + σXtdBt,(3.2)

where r is the growth rate, k is the growth limit and Bt is a standard Brownian
motion. Model (3.2) is a stochastic version of (3.1) but unlike (3.1) does not as-
sume growth is monotonically increasing with time. In this respect the stochastic
growth model (3.2) is a better model for weight. To explain the relation between
these two models, the derivation by May (1973) is appealing. He assumed that
the growth limit κ randomly fluctuates as κ = k + γ(t) reflecting environmental
changes for plants and animals. If it is written as

(κ− k)dt = σ0dBt,

then (3.1) becomes

dXt = (ρk)Xt

(
1 − Xt

k

)
dt + (ρσ0)XtdBt,

which is equal to the model (3.2) when r = ρκ and σ = ρσ0. The source of
random fluctuation in this derivation is that of the growth limit κ. In other
words, individual difference comes from different values of κ in this model.

In this paper, we are interested in investigating the distributional change of
the weight Xt rather than tracing the growth of individual weight. Let p(x, t)
be the probability density function of Xt. Then, as is shown in the Appendix,
regardless of the shape of p(x, t) it converges to the equilibrium distribution p(x)
as time t goes on, provided that r > σ2/2 (p. 629, May (1973)). Note that the
way of understanding a stochastic differential equation is a bit different from
that of a non-stochastic differential equation. The random variable Xt describes
the weight of individuals in the population at time t as a whole. Thus p(t, x)
is the distribution for whole individuals in the population at time t. Since the
equilibrium distribution p(x) is the distribution at the stage of equilibrium, p(t, x)
quickly goes back to p(x) even if p(x) were slightly modified by birth and death
in the population. Of course, it takes longer to come back to the equilibrium
if any big disturbance from outside occurs. Except for such a disturbed case,
the equilibrium distribution can be used as a distribution of the weight, as far
as Xt follows the stochastic differential equation (3.2). Therefore, it would be
reasonable to use this equilibrium distribution p(x) as a model for the weight
of each species in a region where no disturbance from outside were made for an
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adequate period as far as the individual weight increases or decreases along with
the equation (3.2).

As has been suggested by May (1973), the equilibrium distribution of Xt is
a gamma distribution GA(ν, α) with the shape parameter ν = 2r/σ2 − 1 and
the scale parameter α = σ2k/2r. As a reference, we give a simple proof for
the convergence to the equilibrium distribution as time tends to infinity, with
necessary conditions in the Appendix. The proof is similar to that of Goel and
Richter-Dyn (1974), but the conditions are much simpler. It is worth noting that
the solution does not remain the same if the definition of the stochastic integral is
not an Ito type integral. The equilibrium distribution is not necessarily gamma
if other integral types, such as the Stratanovich integral were employed (Feldman
and Roughgarden (1975)).

It is of course possible to introduce another model for the weight. For exam-
ple, a deterministic model

dXt = ρκXt
2/3dt− ρκ2/3Xtdt(3.3)

seems reasonable for the weight Xt = Yt
3, where the length Yt follows the von

Bertalanffy model,
Yt = Y∞ − (Y∞ − Y0) exp(−βt)

with ρ = 3β/Y∞2, κ = Y∞3. The differential equation (3.3) does a good job
describing the difference between surface-proportional anabolism and weight-
proportional catabolism (von Bertalanffy (1960)). We have tried to fit a stochas-
tic modification of (3.3) to the given data,

dXt = ρκXt
2/3dt− ρκ2/3Xtdt + σXtdBt.(3.4)

However, it did not work well. One of the reasons why it does not work well
is the von Bertalanffy model is a deterministic model for the size, so that it
is appropriate for the length of plant or any other increasing size but not for
the weight which increases or decreases. In fact, the equilibrium distribution of
the stochastic model (3.4) is a power transformed gamma distribution with the
power −1/3. Such a negative power transformed gamma distribution does not
seem reasonable. Also, the use of such a distribution for which no reproducibility
property holds true causes a lot of problems in the estimation of parameters and
test of goodness of fit. The distribution of the total weight of each case, which
is the only available observation, becomes much more complicated. Although it
is a big challenge to develop any other type of stochastic modification of the von
Bertalanffy model, we concentrate ourselves on the model (3.2) in this paper.

3.2. Observed weight and maximum likelihood estimate
As has been mentioned, only total weights for each species in each dredge

were recorded in this survey since individual weight measurement is time con-
suming and expensive. Let Wi represent the sum of the unobserved individual
weights, Xj , so

Wi = X1 + X2 + · · · + Xmi , i = 1, . . . , N,
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where mi is the number of individuals caught in Case i. Note that Xj ’s are not
observable but Wi’s are observed with mi’s. The observations W1,W2, . . . ,WN

are now thought to be independent but not identically distributed. However,
we can avoid other complications because of the reproducibility of the gamma
distribution. That is, the Wi is still distributed as gamma GA(miν, α), provided
that Xj , j = 1, 2, . . . ,mi, are independent and identically distributed as GA(ν, α),
i.e. all individuals share the same scale α, and shape ν parameters. The maximum
likelihood estimate of α is a function of ν,

α̂ =
w

mν
,

where w =
∑N

i=1 wi is the sum of observed total weights w1, w2, . . . , wN and

m =
∑N

i=1 mi is the sum of the number of individuals observed. Although no
closed form is known for the maximum likelihood estimate of ν and α, we could
obtain the numerical value of the estimate of ν by a numerical algorithm to
maximise the profile likelihood,

L(ν, α̂) =

N∑
i=1

{− log(Γ(miν)) + (miν − 1) logwi} −mν log
( w

mν

)
−mν.

The function nlminb is an implementation of the nonlinear minimisation program
developed at AT&T Bell Laboratories on R and available in any version of R as
a part of standard library stats. The version of R we have used is 2.12.2, which
is available from http://cran.r-project.org/.

3.3. Goodness of fit
Goodness of fit tests are indispensable when a model is fitted to data. One

visual diagnostic tool is the quantile-quantile or Q-Q plot. However it is restricted
to the case of independent and identically distributed observations. A similar
visual diagnostic tool applicable to non-identically distributed observations would
be a probability-probability or P-P plot (Gan and Koehler (1990), Holmgren
(1995)) which is called the “Universal Q-Q plot” by Luceño (2007). The P-P
plot for N independent observations x1, x2, . . . , xN , each of which is distributed
as Fk(xk;θ), k = 1, 2, . . . , N , in our case which is gamma distribution with the
parameter (mkν, α) for the common parameter θ = (ν, α), is a plot of the N
points, (

k − 0.5

N
,F(k)(x(k);θ)

)
, k = 1, 2, . . . , N,

where x(1), x(2), . . . , x(N) are order statistics of the observations and the distri-
butions Fk(xk,θ), k = 1, 2, . . . , N , are arranged in the same order. The estimate
θ̂ is plugged into θ if the parameter is unknown. A numerical goodness of fit
statistic parallel to the P-P plot is then

W̃ 2
N (θ) =

1

12N
+

N∑
k=1

(
F(k)(x(k)θ) − k − 0.5

N

)2

,
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where the empirical estimate, W̃ 2
N (θ̂), is used if the parameters are unknown as

the same as in the P-P plot. This statistic is closely related to the Cramér-von
Mises statistic,

W 2
N (θ) = N

∫ ∞

−∞
(FN (x) − F (x;θ))2dF (x;θ)

=
1

12N
+

N∑
k=1

(
F (x(k);θ) − k − 0.5

N

)2

,

where FN (x) is the empirical distribution function and reduces to W̃ 2
N (θ) when

the observations are independent and identically distributed as F (x;θ). There
are many articles on the behaviour of W 2

N (θ̂) (Sukhatme (1972), Lockhart and

Stephens (1985)) as well as that of W̃ 2
N (θ̂) (Pierce and Kopecky (1979), Loynes

(1980)). However, their results are not directly applicable for obtaining the p-
value of W̃ 2

N (θ) or W̃ 2
N (θ̂) in our case, so that we will evaluate the p-value of

W̃ 2
N (θ) or W̃ 2

N (θ̂) for the given observation based on 500 sets of generated random
numbers which are distributed as GA(miν, α), i = 1, 2, . . . , N . The evaluation
is not only at the point estimate (miν̂, α̂) but also at several lattice points in
the neighbourhood, (miν, α) for ν = 0.5ν̂, 0.75ν̂, 1.25ν̂ and 1.5ν̂ and α = 0.5α̂,
0.75α̂, 1.25α̂ and 1.5α̂. Table 2 shows one of the examples of the p-values in the
neighbourhood. The data is for the case of Case 2 in the table in the Appendix.
As is easily seen, the p-value does not fluctuate so much, ranging from 0.091 to
0.133, so that, we use the minimum in the neighbourhood as a p-value through
this paper, which is favourable to the rejection of the fit.

Table 2. p-values of the goodness of fit statistic for Case 2.

0.5α̂ 0.75α̂ α̂ 1.25α̂ 1.5α̂

0.5ν̂ 0.119 0.106 0.108 0.121 0.096

0.75ν̂ 0.125 0.127 0.126 0.114 0.114

ν̂ 0.129 0.128 0.125 0.108 0.133

1.25ν̂ 0.115 0.106 0.114 0.118 0.122

1.5ν̂ 0.115 0.091 0.099 0.103 0.092

4. Distribution before trawling

A gamma distribution is fitted to each observation before trawling. The
results for all species are shown in Table 7 in the Appendix, where the gamma
distribution GA(ν, α) is fitted to individual weights for the cases numbered from
1 to 80. Each case can be identified by a combination of its scientific name and
the region name of the experiment. The class and family names are also listed in
the table as a reference. Species identified by scientific name are grouped into a
family and several families are further grouped into a class. We can see what kind
of animals are by-catch from the seabed. N is the number of nonzero observations
out of 27 observations in each case. The maximum likelihood estimates of the
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parameters ν̂ and α̂ are also listed. The last two columns give the value of
goodness of fit test statistic, W̃ 2

N (θ̂), and the corresponding p-value. p-values
less than 0.1 are marked by an asterisk in the table as a reference. It seems
reasonable to exclude these cases which were not a good fit. 23 cases out of
80 cases were excluded for later analysis since we want to detect the effect of
trawling through change of the equilibrium distribution of the stochastic growth
model (3.2). To assist in the visual understanding of the goodness of fit of the
57 unmarked cases, several examples of P-P plots are given in Fig. 2 for Cases 1,
2 and 3.

Case 1 Case 2 Case 3

Figure 2. Examples of P-P plots for Case 1, Case 2 and Case 3.

To understand the meaning of the estimated parameters for the 57 good
fit cases, a reasonable transform of the parameters would be k = α(ν + 1) and
ξ =

√
2/(ν + 1), because it is equivalent to rewrite the model (3.2) as

dXs = Xs

(
1 − Xs

k

)
ds + ξXsdBs,

where time is changed from t to s = rt. The parameter k is now the (determin-
istic) limit of growth and ξ is the size of random fluctuations around the limit
k. Figure 3 is a scatter plot of ξ̂ =

√
2/(ν̂ + 1) and k̂ = α̂(ν̂ + 1) where Case 12

is excluded because k̂ = 735.870 is very large with ξ̂ = 1.219. The points on the
scatter plot are identified by initial letters of class names. For example, H is the
class Hydrozoa as is described on the legend. It is easily seen that the value of
k is very large for 4 species, but it only implies that these species have a heavy
dry weight. However, it is interesting to note that several classes share similar ξ
values. It is less than 0.8 for Bivalvia, greater than 1.0 for Hydrozoa and between
0.7 and 1.1 for Gymnolaemata.

The stochastic growth model (3.2) may not be a good model for some of the
remaining 23 cases. In fact, only one species Dardanus imbricatus shows a good
fit both in the West and East out of four species in the list for which enough
observations are available both in the West and East (Cases 6, 7, 41, 42, 50, 51, 57
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Figure 3. Scatter plot of the size of randomness ξ̂ =
√

2/(ν̂ + 1) and the growth limit k̂ = α̂(ν̂ + 1).

and 58). Possibly, in these cases, environmental factors may have delayed species
maturity or the model (3.2) does not match to those 23 cases. Also, it is worth
noting that there is no consistent rejection of the goodness of fit over different
species. Therefore, we are forced to consider the species by species or case by
case analysis. We leave any further understanding of the results, including a
biological understanding, for future investigation.

5. Effect of trawling

In this section we detect the effect of trawling through discrepancies in the
identified gamma distribution rather than looking at gamma parameter changes.
Although the discrepancy does not necessarily imply the existence of the effect of
trawling, we note that the data is obtained under a careful design of experiments
(Haywood et al. (2005)). Since there is no other effect than trawling we could
say that we have detected the effect of trawling if the discrepancy is significant.

The statistical framework for the calculation of the p-value is different from
that described in the previous section as no parameter estimation is involved in
this stage. We calculate the p-value for the null distribution which is already
identified before trawling. In other words, conditional p-values are calculated.
We have simply obtained the p-value by generating 500 sets of random numbers
distributed as the identified gamma distribution. The number of target cases
now reduces to 50 since not enough individuals are available after trawling for
the remaining cases. A summary of the result for the 50 cases is given in Table 3,
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Table 3. Effect of trawling (U: Uneffected, L: Lighter, C: Changed).

Case N W̃ 2
N (θ0) p-value Effect Case N W̃ 2

N (θ0) p-value Effect

1 6 0.092 0.636 U 34 9 0.115 0.550 U

3 15 0.106 0.584 U 36 14 0.091 0.650 U

5 9 0.076 0.734 U 40 7 0.319 0.106 U

7 13 0.059 0.838 U 41 6 0.319 0.112 U

9 8 0.077 0.748 U 45 7 0.096 0.650 U

11 8 0.144 0.424 U 46 18 0.264 0.184 U

12 6 0.097 0.604 U 47 11 0.143 0.404 U

13 17 1.075 0.000 L 49 9 0.658 0.022 L

14 8 0.223 0.212 U 51 13 0.166 0.348 U

15 12 0.441 0.058 L 52 7 0.367 0.088 L

19 9 0.150 0.422 U 53 12 1.556 0.000 C(L)

20 10 0.044 0.918 U 57 11 0.211 0.248 U

21 13 0.549 0.030 C(L) 58 8 0.191 0.276 U

22 12 0.183 0.334 U 59 14 0.242 0.210 U

23 10 0.446 0.054 L 60 7 0.097 0.640 U

24 12 0.125 0.530 U 61 12 0.390 0.094 C

25 9 0.212 0.272 U 63 10 0.200 0.250 U

26 15 0.458 0.036 C 70 7 0.066 0.808 U

27 14 0.184 0.322 U 71 15 0.188 0.300 U

28 8 0.225 0.208 U 73 6 0.277 0.136 U

30 9 0.122 0.516 U 75 10 0.697 0.008 C(L)

31 11 0.197 0.276 U 76 6 0.327 0.100 U

32 18 0.253 0.210 U 78 12 0.355 0.118 U

33 8 1.663 0.000 L

where the uneffected cases are denoted by U, lighter cases by L and C denotes
cases that change, but not consistently lighter nor heavier, in the column labelled
Effect. There are no heavier cases in our study. The type of effect is determined
by stochastic order. It is L if the discrepancy is significant with level 0.1 in terms
of the p-value and F(k)(x(k);θ0) < (k − 0.5)/N for k = 1, . . . , N . The latter is
equivalent if all points are below the 45 degree line on the P-P plot and C(L)
where it is almost L, with a few exceptional points on the P-P plot. It is worth
noting that almost all species are different except Cases 57 and 58, suggesting
that the effect of trawling on a species weight is different for different regions
East or West.

We can see more detail about changes of the distribution through P-P plots.
Figure 4 gives us such plots for 6 cases of type L. A possible interpretation for
type L species would be that those species have difficulty avoiding the trawl net
and only individuals smaller than the net size remain, so that the distribution is
skewed in the lighter direction.

Figure 5 gives us the plots for 5 cases of type C or C(L). It is easily un-
derstood that the distribution is skewed to lighter weights for Case 21, Case 53
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Case 13 Case 15 Case 23

Case 33 Case 49 Case 52

Figure 4. P-P plots for six cases where the weight distribution became lighter after

trawling. The null distributions are GA(1.313, 24.512), GA(2.687, 0.062), GA(4.320, 0.660),

GA(35.112, 0.043), GA(2.388, 5.049) and GA(5.018, 0.259), respectively.

and Case 75, if a single point on the P-P plot was neglected. However, there is
no clear direction of change for the other cases, Case 26 and Case 61. This is
probably because such species are more sensitive to other factors like the local
unevenness of the environment rather than that of trawling.

6. Comparison with simple mean tests

We have seen the effectiveness of the gamma distribution in detecting the
effect of trawling. It is however worthwhile to compare this result with that
obtained by a simple mean difference test statistic like Welch’s T as

T =
W̄a − W̄b√
sa

2

Na
+

sb
2

Nb

,

where W̄a is the sample mean of weights normalised by the number of individuals
caught after trawling, sa

2 is the sample variance and Na is the sample size, and
W̄b, sb

2 and Nb are those for the normalised weights before trawling. Table 4
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Case 21 Case 26 Case 53

Case 61 Case 75

Figure 5. P-P plots for five cases where the weight distribution changed without direction after

trawling. The null distributions are GA(2.342, 3.467), GA(26.664, 0.0463), GA(1.007, 3.693),

GA(27.462, 0.049) and GA(0.690, 3.327), respectively.

shows the p-values for our statistic and for the T statistic for the two sided
alternative hypothesis in the case of type U. Also p-values for the Student’s T
test statistic,

T =
W̄a − W̄b√

sa
2

Na

given W̄b, are shown in the table for reference, since the p-values for W̃ 2
N (θ0) are

calculated conditionally on the data before trawling.
It seems reasonable that the p-values for Welch’s T are all large for the cases

of type U. However, the values themselves are not consistent with those for
W̃ 2

N (θ0), particularly for the three cases marked † in the table. The reason is
that the discrepancy from the null distribution is symmetric, so that the mean
difference fails in describing such a discrepancy as is seen from the P-P plots
given in Fig. 6. The p-values for the Student’s T are not consistent with those
for Welch’s T , particularly for the three cases marked ∗ in this table. The reason
is that the conditional test is sensitive to a slight shift of the distribution as is
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Table 4. Comparison of the p-values for type U.

Case 1 3 5 7 9 11 12

p-value (W̃ 2
N (θ0)) 0.636 0.584 0.734 0.838 0.748 0.424 0.604

p-value (Welch’s T ) 0.524 0.541 0.735 0.642 0.376 0.756 0.804

p-value (Student’s T ) 0.315 0.428 0.690 0.507 0.354 0.734 0.679

sign(T ) – – + – + + –

14 19 20 22 24 25 27 28 30 31∗

0.212 0.422 0.918 0.334 0.530 0.272 0.322 0.208 0.516 0.276

0.318 0.777 0.975 0.757 0.810 0.465 0.423 0.628 0.674 0.154

0.130 0.756 0.960 0.592 0.771 0.135 0.298 0.269 0.526 0.097

– – – + – + – + + +

32 34 36 40 41 45 46† 47 51 57∗

0.210 0.550 0.650 0.106 0.112 0.650 0.184 0.404 0.348 0.248

0.851 0.967 0.721 0.177 0.260 0.981 0.992 0.954 0.393 0.157

0.808 0.955 0.609 0.105 0.186 0.976 0.990 0.947 0.279 0.016

+ + – – + + – – – –

58 59∗ 60 63 70 71 73 76† 78†

0.276 0.210 0.640 0.250 0.808 0.300 0.136 0.100 0.118

0.372 0.269 0.963 0.766 0.730 0.425 0.338 0.606 0.833

0.330 0.055 0.945 0.682 0.670 0.354 0.301 0.595 0.797

– – + + – + – + –

Case 46 Case 76 Case 78

Figure 6. P-P plots for Case 46, 76 and 78 after trawling.

seen from P-P plots for those three cases given in Fig. 7.
Table 5 is a similar table for type L. It is clear that Welch’s T fails in

detecting changes in the 3 cases marked by †, although the values of Welch’s T
are all negative. The sensitivity of Student’s T makes a difference for Case 23 as
well as for Type U.

Table 6 is for Type C or C(L). In this case, Welch’s T fails in describing
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Case 31 Case 57 Case 59

Figure 7. P-P plots for Case 31, 57 and 59 after trawling.

Table 5. Comparison of the p-values for Type L.

Case 13 15† 23† 33 49 52†

p-value (W̃ 2
N (θ0)) 0.000 0.058 0.054 0.000 0.022 0.088

p-value (Welch’s T ) 0.005 0.291 0.194 0.010 0.020 0.486

p-value (Student’s T ) 0.000 0.174 0.014 0.009 0.013 0.384

sign(T ) – – – – – –

Table 6. Comparison of the p-values for Type C or C(L).

Case 21 26† 53 61† 75†

p-value (W̃ 2
N (θ0)) 0.030 0.036 0.000 0.094 0.008

p-value (Welch’s T ) 0.084 0.168 0.056 0.937 0.720

p-value (Student’s T ) 0.020 0.073 0.008 0.928 0.696

sign(T ) – + – – +

changes with a level of 0.1 in 3 out of the 5 cases. A significant difference is
shown for Case 75, where the sign of Welch’s T is positive although it belongs
to type C(L). Similar comments apply for the Student’s T as these for Type
L. As a summary, Welch’s T tends to fail in the detection of distributional
changes when the empirical distribution differs from the null distribution in a
symmetric manner. On the other hand, Student’s T seems very sensitive for
slight differences from the null distribution. Such mean difference tests are simple
and easy to use, but not strong enough for detection of distributional changes
since the distributions are only identified by the mean.

7. Discussion

We have shown that the gamma distribution, the equilibrium distribution of
the stochastic growth model, not only describes the distribution of species weights
but also provides good support to detect the effect of trawling for each species,



200 M. NAKA ET AL.

including the direction of changes. Goodness of fit of the distribution is tested
by a modified Cramér Von Mises type statistic with a graphical representation
of the fit by a P-P plot. One of the reasons why we need such a test is that
only the total weights of catches for each species are recorded in this survey.
As a result the integrated use of numerical and graphical tests of goodness of
fit provide us with a better understanding of the trawling effect. It is obvious
that formal testing of gamma parameter changes does not lead us to a complete
understanding of distributional changes. It is always a problem in biological data
analysis to be able to cope with small numbers of effective samples. As has been
shown in this paper, the introduction of a descriptive model like (3.2) can boost
our analysis but it is not enough. Augmentation of data, for example, combining
different treatment levels as we have done, is also needed to cope with a limited
number of observations. It is of course at the cost of losing some important
aspects of the data. In fact, the augmentation destroyed part of the design of
experiments planned before the survey. A suggestion would then be that simple
but more frequent experimental dredges are desirable for detecting the effect of
trawling in future surveys.

A limitation of our analysis is that nothing can be said about the 23 species
to which the equilibrium distribution does not fit well. It is a further challenge to
develop another model which is applicable to these remaining species. We could
classify the remaining 50 species into three types, unaffected, lighter and changed
in Section 5. The fact that no heavier species were found is an interesting result
which supports our analysis. However, it is unfortunate that nothing more can
be said about details of the effect, for example, region specific environmental
effects or ecological factors. We hope that our results will be helpful for further
understanding of the effect as well as making a new sample survey.

A further challenge is to have a deeper biological understanding of the results.
For example, we have discussed with biologists many times how to interpret the
pair of the values of ξ and k, which are displayed on the plot in Fig. 3. However,
it was not easy for them because most of the by-catch species are new to them.
We hope that our results including Table 7 will help deepen the understanding
of seabed fauna in the Northern Prawn Fishery, not only from the view point of
fishery, but also the view point of ecology.

Appendix
Equilibrium Distribution of the Growth Model
In this appendix, the equilibrium distribution is derived in a general frame

work when {Xt} satisfies

dXt = a(Xt)dt + b(Xt)dBt.

It is well known that the probability density function of p(t, x) for Xt satisfies
the Kolmogorov’s forward equation,

∂p(t, x)

∂t
= − ∂

∂x
(a(x)p(t, x)) +

1

2

∂2

∂x2
(b2(x)p(t, x)).
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The equilibrium distribution p(x) = limt→∞ p(t, x), then satisfies the equation

0 = − d

dx
(a(x)p(x)) +

1

2

d2

dx2
(b2(x)p(x)).(A.1)

By integrating the both sides of (A.1), we have

a(x)p(x) − 1

2

d

dx
(p(x)b2(x)) + C = 0,

for a constant C, which is not necessarily null. However, C becomes 0 as far as
p(x) satisfies the following boundary conditions

lim
x→∞

p(x)a(x) = 0 and lim
x→∞

d

dx
(p(x)b2(x)) = 0.

Then q(x) = p(x)b2(x) is the solution of

d

dx
q(x) − 2a(x)

b2(x)
q(x) = 0,

that is

p(x) =
C ′

b2(x)
exp

(∫
2a(u)

b2(u)
du

)
,

where C ′ is a constant.
In case of our growth model, since a(x) = rx(1 − x/k) and b(x) = σx, we

have the gamma distribution

p(x) =
C ′

(σx)2
exp

(∫
2rx(1 − x/k)

(σx)2
dx

)

=
C

σ2
x−2 exp

(
2r

σ2

∫ (
1

x
− 1

k

)
dx

)

=
1

ανΓ(ν)
xν−1 exp

(
−x

α

)

for ν = 2r
σ2 − 1 and α = k

ν+1 .
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