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Abstract

The order of consistency of parameter estimate of Ito type stochas-
tic differential equation is investigated for the case when observations
are obtained at finite number of time points. Three types of estimates
are examined, the exact maximum likelihood estimate, the maximum
likelihood estimate based on Euler-Maruyama approximation and a
bootstrap estimate. The result shows that the exact maximum likek-
ihood estimate is consistent for a wide variety of choices of sampling
interval and a careful choice of the sampling interval gives us the
highest order of consistency but the Euler-Maruyama estimate is only
consistent for a limited choice of the sampling interval. The bootstrap
estimate behaves similarly to the exact maximum likelihood estimate
and applicable for wider type of stochatic differential equatiion than
Ornstein-Uhlenbeck or Longnomal process which are mainly investi-
gated in this paper.
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1 Introduction

In this paper, we will investigate the effect of discrete time sampling on
the estimation of the parameters @ = (6,---,6,)T of a stochastic process
{Xi,t > 0}, which satisfies a Markovian type stochastic differential equation,

dX, = a(X,,t;0)dt + b(X,,1;0) - dB,. (1.1)

Here {B;,t > 0} is a standard Brownian motion and the product b(X,t; 0) -
dB; is defined as a limit in probability of

n

Z b(Xti_.17 tiwl; 0)<Bt1 - Bti—l)

i=1
as the partition {[t;_1,%;)}", of dt becomes finer and finer. Although this
type of product, It6 product, is commonly used in practice from Hydrology to
Option Pricing theory(Black and Sholes, 1973, Lo, 1986, 1988), there could
be many other ways of defining the product. An example is Stratonovich’s
product. From the view point of statistical modeling, different definition of
the product yields different understandings of phenomenon which stochastic
differential equation describes( Sethi and Lehoczky, 1981). We don’t go fur-
ther into this issue in this paper, but only direct the reader’s attention to
the practical importance of the problem which definition of the product is
appropriate for each phenomenon.

The main concern in this paper is the order of consistency of parameter
estimate when observation is only obtained at finite number of time points,
0 <ty <t <ty <+ <t, Forsimplicity, we assume that all time in-
tervals [t;,t;—1),% = 1,---,n have the same length A, which may depend
on the number of observations n + 1. It becomes clear that the order of
consistency of parameter estimate heavily depends on the choice of A,, and
on the type of estimation procedure. Even the consistency of the estimate
does not hold true unless A,, is carefully chosen so as to satisfy appropriate
conditions required for each estimate. We will clarify such a machinery for
each type of estimates, the maximum likelihood estimate based on the exact
solution, which we call ezact maximum lkelihood estimate, the maximum
likelihood estimate based on Euler-Maruyama approximation, which we call
Euler-Maruyama estimate, and the bootstrap estimate. We restrict our at-
tention into two types of stochastic differential equations or the processes,
Ornstein-Uhlenbeck process,



or Lognormal process,

One of reasons why we restrict our attention into such two special processes
is that the exact solution of the equation is known for those two processes
so that it is easy to compare different estimates exactly. We believe that our
results can be generalized for any other process, but we leave it for future
investigation.

Our result shows that the exact maximum likelihood estimate is consistent
for a wide variety of choices of A,, and the order of consistency is the highest
in most cases. In case of Ornstein-Uhlenbeck process, the highest order of
consistency +/n is achieved for the case when > 0 as far as the sequence
A,, is bounded and bounded away from 0. On the other hand, if 3 < 0 there
is no bound for the order of consistency. That is, the faster divergence of
A,,, the higher order of consistency. This is because the randomness due to
Brownian motion is negligible relative to the explosive drift —3X;dt in (1.2).
In case of Lognormal process, the faster divergence of A,,, the higher order of
consistency of iy g, irrespective of the value of p. In either case, the exact
maximum likelihood estimate looses its consistency if A, converges too fast
to zero. For the Euler-Maruyama estimate, the range of A,, which yields the
consistency is narrower than that for the exact maximum likelihood estimate
and the order of consistency is also lower. For example, the order /n is
never attained by any choice of A, when 3 > 0. On the other hand, the
bootstrap estimate is quite promising. The same range of A, as that for
the exact maximum likelihood estimate yields the consistency and the same
order of consistency is achieved, as far as the re-sampling size is large enough.
Although there is no need to use such a bootstrap estimate when the exact
solution of the equation is known, the result suggests a power of bootstrap
type estimate even when the exact solution is unknown.

It may be dangerous to conclude something concrete from such limited
two case studies, but we believe that our result describes an aspect of an
effect of discrete time sampling on the order of consistency of parameter
estimate. We leave any generalization of our result for future investigation.



2 Order of Consistency of Parameter Esti-
mate

We will investigate the consistency of three types of estimates one by one.
The results are summarized in the last section. We always assume that o > 0.

2.1 Exact Maximum Likelihood Estimate

In this subsection, we will investigate the order of consistency of the exact
maximum likelihood estimate separately for Ornstein-Uhlenbeck process and
Lognormal process.

2.1.1 Ornstein-Uhlenbeck Process

The exact solution of the stochastic differential equation (1.2) is well known
that

¢
X, = e_ﬁ(t_’f‘)){Xt0 + (7/ exp(fu)dB,}.
to

If we rewrite it as

t
Xy, — X, e P8 = e‘ﬂ(ti_t‘))a/ exp(Bu)dB,,
ti—1
then, from the Markov property of the process the conditional log likelihood
for observations x,, <, -, Tt,, given Ty, is given by

l<0) - 10gf9(55tn, T 75("151'1750)

n

n 1
= —3 log(27y) — o Z(ilf't,» — exp(—fAn)z,_,)*.
=

For convenience, a parameter transform from (3, o) to (5,7) is employed, |

. { 0% exp(20to){1 — exp(~208,)} /26 5 # 0

geix,, otherwise.

In this paper we always call such a conditional likelihood /(@) simply the
likelihood. The maximum likelihood estimate of @ = (3, )7 is then given by

n
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BuLE = A 08—, —3
n i=1%t;—1
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The exact maximum likelihood estimate of o2 is thus

6%s = IMLE - 2BNILE exp (~~2BMLE to)/ (1 — exp (—-QBMLEAn)) . (2.4)

We need the following lemmas to evaluate the moments of such estimates.
Without loss of generality, we may assume that t, = 0. Otherwise it is
enough to replace 2 by o2 exp(2fty) in the following lemmas. We hereafter
use the notation d,, = exp(—FA,,) for simplicity.

Lemma 1
If =0,
n nin —1 .
E <2Xt2141 Xto = l‘to> = (.’Ego + —‘(—‘2——)An> O'Z
i=1
and
/ 2 4
n(n—1)o 7 7 13 .-
(£ ) = B2 (Tt (- B0
i=1
4 1
= 208 An+ EAi}
Otherwise,
n n 1 1 - dn
E(Y X2 | Xe=a4) =455+ |2}, — 5= ") po’
(; ti—1 to $t0> {25 + (xto 25) <1 . dn) } g
and




(B B\l (3. 3Y1-d
B T gt Ty | g T\ T T 9 ) 1—d,

n(n — 2) PR 1\ d,—d;
T *@%_6m+m (1= dn)?

dy, — dp* s 6., 1 dy — d’
S Sk, SN ) ¥ Y S
252(1 — d,,)? o T B0 T 282 ) (1= dp)?(1 +dy)

5 , 5 dp, — nd? + (n + 1)dr*!
RGN (1= dn)? )
ez (1-r)\/n—1
' <'ﬁ_' 25 >(1—dn>}‘

Since the proof of Lemma 1 is straightforward, we omit the proof.

Lemma 2

E Z‘(YtiAl (Xti - anti_l)l Xto =Ty | = 0
|

=1
and
n 2
E ((ZXtil (th - anti—1)> XtO - ZL'tO)
=1
{1?,?0(1 An)nA, +nn UAQ} if =0,
[%(1 @)+ # {n(1—d,) — (1 - dfz”)}] o* otherwise.
Proof

Define W; = [ exp(Bu)dBy,i=1,---,n with Wy = 0. Then we can write

Z X (X — dnXi, ) = Y exp(—B(tio1 +:)) (XKoo + D W)W,
5 s
The lemma for the case when 8 = 0 is trivial, and we prove it in other cases.
Without loss of generality, we assume that o = 1. Since W;’s are independent
and normally distributed random variables with mean 0 and variance

: (eXp(2,6t ) eXp(Zﬂti‘—l))? = 17 N,

0 = 25



we can write

E (Z X ( Xy, — dn X, )| Xoo = a:t0> =EWTCW)
=1

Xto = Tty }

n 2 n i—1 .
=z, E (}j exp(—PB(ti-1 + ti))Wz) +E (Z exp(—Bti1 +t:)) > WM)

=1 i=1 =i

and

n 2
E { <Z Xti—l(Xti - anti—1)>
=1

2
= T @) 4 E(WTCW)2
20
Here we used the notations of the vector of random variables W = (W4, - -+, W,)T
and the matrix

[0 0]

Cy 0 0

Cay Ca 0 0

= C3 C3 C3 0 0
| Cn—1 Cp-—1 Cn—i *** Cp—1 0 |

where ¢; = exp(—0(t;-1 + t;)). To evaluate the moments of WTCW, it is
convenient to symmetrize C into A = C+C7T. Then, there exits a nonsingular
matrix I’ such that
A 0
FTAF = and FTYF =1,
0 An

where ¥ = diag(dy,- -+, 0n), and Ay, -+, A, are the roots of
det(A — AZ™Y) = 0.

Define a vector of random variables Y = (Y3, - Y )T = F7'W, then we
have "
WTAW =2WTCW =Y NY72.

=1



Since Y7, ---,Y,, are independent and normally distributed random variables
with mean 0 and variance 1, we have

EWTCwW) = -

>
i=1

N} |

and

2_ _ ]‘ 27L

=1 k=11i=k+1

This completes the proof of Lemma 2.

To evaluate the order of consistency of Byrr and of 4aLE Or 635, it iS
convenient to introduce new variables,

= 2
. ﬁ Z Xt1—1

and e
§n = o 3 X - A X )
n =1
We can then write
Pure — B = —z— log (1 + g—”) (2:5)

and

2
. 1< £y
YMLE — 7 = 5 Z <-Tti = dnxti_l - dnn—ﬂftid) -

1 n 52
= —Z T, —dna:tz 1) "”}’—dii (26)
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To know the order of consistency of BMLE it is necessary to find two nor-
malizing constants a,, and b,, by which 7, /a, and &, /b, have non-degenerate
limiting distributions. Such constants can be easily found from the evalua-
tion of moments in Lemma 1 and Lemma 2 since the underlying process is
driven by a Brownian motion. The results are summarized in Table 1 and
Table 2. As is easily seen, the constant a,, or b, takes significantly different
values according to both the value of parameters and the initial value z,, of
the process.

Table 1. Normalizing constant a,, for 7, to have a
non-degenerate limiting distribution.

6=0
&, B>0 [z =02 #£0) H<0
ni, — 0o 1 ni\, i | d2l
nA\,, bounded (nAn)'% (nAn)% 1 (nAn)_%

Table 2. Normalizing constant b, for £, to have a
non-degenerate limiting distribution.

8=10
A, B>0 [Z,=0] a2 #0 | A<0
Ap—oo | (Wad)t| A, | (m/A)E]| dim
A,, bounded (n/An)_% By (n/A,)~3 (njbu) =

We say that the order of consistency of an estimate 0 is ¢, if the mean
squared error E(0 — 6)? is exactly of the order of 1/c2 in its magnitude for
any #. To evaluate the order of consistency of an estimate we need further
evaluation of the order of the ratio b,/a, which is summarized in Table 3.
Such conditions for A,, are denoted in the table by D; to Dy:

Dy: A, diverges to infinity.
Dy: A, is bounded and bounded away from 0.
Ds: A, converges to zero but nA diverges to infinity.

Dy: n/\,, is bounded.

Table 3. Ratio of the normalizing constants: b,/a,,.



G=4
A, p>0 Zy, =0 gy 2= 6 <0
Dy ('\/ﬁdn)_l 1/n n‘%A;% d;(”—l)
DoV Ds | (n/A)3 | 1n | niAn® | (nA,)3d;2eD
Dy An (n/An)7% | (n/A,) "3 A,

Noting that ﬁMLF — (3 is of the order of <~

L log(1 + b,/a,) in probablhty

as is seen from (2.6) we have the following theorem
Theorem 1.

The maximum likelihood estimate BMLE of the parameter 8 of Ornstein-
Uhlenbeck process is consistent only in the following cases.

Case 1. >0
If the condition D; is satisfied, then BMLE is consistent as far as
a, = A,/log(l + 1/(y/nd,)) diverges to infinity and if so the order
of consistency is a,,. It is also conmstent under the conditions Dy or
Ds and the order of consistency is (nA,,)z.

Case 2. (0 =
ﬁM LE is consistent except for the case of Dy. The order of consistency
3
is nA,, or (nA,)? according to x;, being zero or not.

Case 3. <0
/31»1 i is consistent except for the case of Dy. The order of consistency
is A,d"~! for the case of D; or D,, and (A, /n)2d2(" D for the case of
Ds.

Proof
Most of the results directly follow from Table 3. We only give a part of the
proof. For example, in Case 3, if A,, diverges to infinity then the ratio b,/a,
is of the order of d;;»~!) which converges to zero. Therefore KI; log(1+4b,/a,)
is of the order of d;™ "V /A,. If A, is bounded but nA,, diverges to infinity,
then the ratio b,/a, is of the order of (nAn)%d; 2(n=1) which goes to zero,

10



so that z-log(l + b,/ay) is of the order of (n/A,)2d;2=Y . Finally, if the
condition D, is satisfied, Ainlog(l + A,) never converges to zero, so that

BarLe is inconsistent.

For the consistency of 62,; ;, we need first the following proposition which
assures the consistency of Y.

Proposition 1.

The maximum likelihood estimate Jy,r5 of 7 of Ornstein-Uhlenbeck process
is always consistent with the order of consistency +/n.

Proof
In (2.6), £ X% (w4 — dny,_, )* —y is of the order of 1/4/n in probability since
(4, — dp X, _,, 1 =1,---,n are independent and normally distributed random

variables with mean 0 and variance 7. On the other hand, the last term
d2€2 /n, is of the order of (d2 /(1 —d2))(b?/a,) in probability which is always
less than 1/4/n in its magnitude. This complete the proof of Proposition 1.

On the contrary to the consistency condition for 4,1z, that for 63, LE 18
not so simple. The behavior of the estimate 6%,  is affected by that of Gy LE
through a link between those estimates shown in (2.4). From the following
theorem we can see the effect of BM e to the estimate 2.

Theorem 2.

The maximum likelihood estimate 62,,; of the parameter o® of Ornstein-
Uhlenbeck process is consistent only in the following cases.

Casel. >0
Except for the case of Dy, the estimate 6%, is consistent as far as
ay, diverges to infinity, where «, is the sequence defined in Theorem 1.
In case of Dy, the order of consistency is \/nA,d, if \/nd, diverges to
infinity and it is min(y/7, o, ) otherwise. In case of D, or D3, the order

is v/n or v/nA, respectively.

Case 2. 0 <0
Except for the case of Dy, the estimate 63, ;; is consistent. The order

11



of consistency is min(y/7, d*!) or min(y/7, (A, /n)2d2"1) according
to the case Dy or Ds.

Case 3. B =0,to #0
Except for the case of Dy, the estimate 63, is consistent. The order
of consistency is /n if the condition D; is satisfied. For the case of
D, or Ds, the order of consistency varies according to z;, being zero or
not. It is min(y/7, (nA,)?2) if ¢, = 0, and min(,/n, nA,) otherwise.

Case 4. §=0,t,=0
The estimate 6%,  is always consistent and the order of consistency is

N

Proof
When ( # 0
53 I A 1—d? 3
MQLE _ YMLE eXp(—Z(ﬁMLE . ﬁ)to) k ﬁMLE
o g 1—d2(1+4) P

YMLE b\ \ A" 1—d?
= = 1+0,|— 5.
) g o, 6)
If we remember the evaluations of the ratio b,/a, in Table 3 together with
Proposition 1, then the desired results follow. The case § = 0 is special.
Note that ) )
0%s  YvmLe 20mrEAn exp(—20mLEto)

o? 0 1 — exp(—2Bmreln)

b

in this case and
28rmLEln B 2log (1 + %)

A - . 2.7)
1 —exp(—2Bmreln) 1 -— (1 + %)2

Since &, /n, always converges to zero in probability as is seen from Table 3,
=2
the right hand side of (2.7) is evaluated as (1 + 0, (Z—Z)) . We have then

&%\IIE - 1 br _2+2Zt%
A= (o)) (e (3) T

12



from Proposition 1. The desired results for Case 3 and Case 4 follow from
Table 3.

2.1.2 Lognormal Process

In case of lognormal process, the solution of the stochastic differential equa-
tion (1.3) is given by

1
X = X;, exp {(,u — 5(72)(15 —tg) + O'Bt} :

By transforming observational variable X;,,7 =0,---,n into

2
g .
Yti - log(Xti/Xti‘l) = (/_L - ?)An + O'(Bti — Bti41)7 1= 1, e, N,

we obtain the log likelihood

n g 1 7 9
1(0) = —5 log(2mo*A,,) — 57 ; (ys, — ally)
of @ = (a,0%)7T with a = pu — 0?/2 when the transformed observations
Y, Ui, are available. Since this log likelihood differers from the log like-
lihood based on the original observations x,,% = 0, - - -, n only by a constant,

the maximum likelihood estimate of @ is unchanged by the log transformation
of observations. Therefore

ayMLE = nin ;yt,» = nin log %Z
and
A 1 & . 9
OMLE — A, ;(yti — GpreAn)
I = 1 20\’
e e
Since Y;,,i = 1,---,n are independent and normally distributed random

variables with the mean aA, and the variance 0?A,, 63, has the mean
(1 — 1/n)o? and the variance (2/n)o*. Thus e has the mean o and
the variance o2/(nA,,). Therefore 63, is always consistent with the order

13



\/n irrespective of the choice of A,. On the other hand, fiyrer = Gyre +
(1/2)6%,,p has the mean —(0?/2n) and the variance o/nA, + ¢*/2n, so
that it is consistent if and only if nA,, diverges to infinity. Summarizing
these results, we have the following theorem.

Theorem 3.

The maximum likelihood estimate fip;rr of the parameter p of Lognormal
process is consistent except for the case of D, and the order of consistency
is given by min(y/7, (nA,)2). The maximum likelihood estimate 6%, is
always consistent with the order of \/n irrespective of the choice of A,,.

2.2 Euler-Maruyama Estimate
2.2.1 Ornstein-Uhlenbeck process

Euler-Maruyama approximation is simply to approximate a stochastic differ-
ential equation by a stochastic difference equation. The differential equation
(1.2) is approximated to

Xti - Xtid . _ﬁXti—l (t'i - ti—l) + U(Bti o Btivl) : (28)
Regarded that the process {X;} satisfies this difference equation, we have
the log likelihood of @ = (8, 02)* for given observations z:,,i =0,---,n,
. n 5 1 & 9
l(0) = —5 10g(27T0 An) — 'Z'O—QA‘;L‘ ;(Itl el (1 = ﬂAn)l'ti_l) :

Strictly speaking, this is in fact the conditional log likelihood given z,, but
we call it simply the log likelihood in the same way as in Section 2.1. The
maximum likelihood estimate then becomes
4 1 o Ty, Ty,
By = — (1 — ————Zz_nl tz; t’)

ATL =1 ‘Lti_l

and

n n 2
~2 1 Z N =1 xtj_lxtj ”
gy = nA T, n 2 ti—1 :

=1 T,

If we note that

frs 8= 3= { (1= 8 = expl=p) (& 1)

n n

14



we have the following theorem from Table 3 in the same way as in the pre-
ceding section. In the following theorems we evaluate the behavior of the
estimate under the assumption that the observation follows the differential
equation (1.3), although the estimate is derived from the difference equation
(2.8). It is important to distinguish the model used for estimation from that
generates observations.

Theorem 4.

The Euler-Maruyama estimate By of the parameter 3 of Ornstein-Uhlenbeck
process is consistent in the following cases. Otherwise Sgy is inconsistent.

Casel. 3>0
(3 is consistent only when the condition Dj is satisfied and the order of
. - N
consistency is (nA,)z.

Case 2. =0 K
Except for the case of Dy, Bgy is consistent and the order of consistency
p 3 .
is nA\,, if 74, being zero and (nA, )2z otherwise.

Case 3. f <0
BEyu is consistent only when the condition Djs is satisfied and the order
of consistency is A,d" L.

For the consistency of 6%, we have the following theorem.
Theorem 5.

The Euler-Maruyama estimate 6%, of Ornstein-Uhlenbeck process is consis-
tent in the following cases. Otherwise 6%, is inconsistent.

Case 1. ##0
If the condition D3 or Dy is satisfied, then 6% is consistent if ¢y = 0.
The order of consistency is min(y/n, 1/A,,).

Jase 2. =10
6%y is always consistent and the order of consistency is v/n.

15



Proof

Note that CAT%U = ’%WLE/AW If ﬂ # 0, then

0py _ exp(20to)(1 — e 2P2) Yy

o? 284, 0%

Since YarE is a consistent estimate of v with the order /n as is seen in
Proposition 1, 62, is consistent if and only if A, converges to zero and
to = 0. Otherwise a significant bias remains. If g = 0, then

A 2 A
Ogu _ YMLE
o? y

Therefore 6%, is always consistent with the order /n from Proposition 1.

2.2.2 Lognormal Process

Euler-Maruyama approximation to Lognormal process leads us to the differ-
ence equation,

‘Y'lfi - Xti—l - MXti—l(ti - ti~1) + Xti—lo-(Bti - Bti—l)'

Regarded that {X;} satisfies this difference equation, the random variables

are independent and normally distributed with the mean pA,, and the vari-
ance 02/,,. The log likelihood function then becomes

n 1 n
1(0) = ) log(2ma?A,,) — SoIA. > (g — pA)2.

7 =1

If we remember that the transformation from {X;} to {Y;,} only causes
a difference of likelihood functions by a constant, we have the maximum
likelihood estimate of @ = (i, 0%)T as

i 1 D Ty, — Ty,
Zyti_nA Z

n =1 - n =1 Lt; a1

N B 1
,UEU—nA

16



and

There is another way to derive the maximum likelihood estimate by
using Euler-Maruyama approximation: first apply the log transformation
Y, = log(X;) and next apply Euler-Maruyama approximation. Then the
differential equation (1.3) becomes

1,
dy; — (;L - 50“) dt + odB, (2.9)
by the log transform and the Euler-Maruyama approximation yields
1
},ll - Y, = (:u - '2_0-2)(ti = tifl) o U(Bti = Bti—l) .

As a result this equation is not an approximation but an exact difference
equation which {Y;} satisfies. Therefore, the maximum likelihood estimate
based on such Y;,’s coincides with the exact maximum likelihood estimate
fnre and 63, before. This is a specific property of Lognormal process
where Euler-Maruyama approximation causes no approximation error. The
reason is that all coefficients of the differential equation for {Y;} in (2.9)
being non-random. Thus in the following, we will evaluate the behavior of
the previously defined figy and 6% .

To evaluate the consistency of fipy and 6%, it is enough to note that
log(Xy,/Xy,_,), @ = 1,--+,n are independent and normally distributed ran-
dom variables with mean (u—o0?/2)A,, and variance o2A,, under the assump-
tion that {X;} satisfies the differential equation (1.3). Thus

. 1
E(ipy — p) = 1 (exp(pln) —1) — p
and
) 1
Var(figy) = A eXP(ZMAn)(eXP(UQAn) = Tk

17



Also

and

where

Ry

Ry

R,

Ry

and
Rs

. 1\ 1
E(6%,; — 0?) = (1 - E) A exp(2ul,){exp(o?A,) — 1} — o?

. 1
Var(6%,) = — { n(n—1)2Ry — (n® — 20% + 3n — 4)R,

A
+8(n — 1)2R3 + 2(n* — 4n® + 9n® — 6n — 4)R,

—(n* — 2n3 4 3n% + 20 — 24)R; } ,

= exp(2(2u + 30%)A,) — 4exp(3(u + 20°)A,,)
+6exp((2p + 0H)A,) — dexp(ud,) + 1

= exp(2(2u + 0¥ A,) — dexp((3u + o) A,) + 2exp((2u + 0%)A,,)
+4exp(2ul,) — 4exp(puA,) + 1

= exp((4p + 30%)A,) — exp(3(p+ 0*)A,) — Bexp((3p + 0°)Ay)
+3exp((2p + o)) A,) + 3exp(2pA,,) — dexp(pd,) + 1

= exp((4p + 0*)An) — 2exp((Bp + 0°)A,) + 3exp((2u + 7*)An)
—2exp(3ulA,) + 5exp(2ul,) — dexp(pA,) + 1

= (exp(pd,) — 1)*.

We have now the following theorem for the consistency of figy and 6%.

Theorem 6

The Euler-Maruyama estimates jigy and 6%;; of the parameters of Lognormal
process are both consistent if and only if the condition D5 or D, is satisfied.
The order of consistency of fizy and 6% is then min(y/n,1/A,) and 1/A,
respectively.

We now understand that Euler-Maruyama approximation heavily affects
the behavior of the estimate of parameters, although this approximation
is established as a standard tool of approximating the Ito type stochastic
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difference equation. From the view point of approximation of a process, the
sampling interval A,, should be chosen as small as possible, but it is not true
for estimation of parameters. For example the order of consistency of the
estimate Bgy of B of Ornstein-Uhlenbeck process becomes lower as is seen
from Theorem 4 and the estimate of o2 is consistent in the limited cases.
Similar things happen also for Lognormal process.

2.3 Bootstrap Estimate

As is seen in the previous section, Kuler-Maruyama approximation affects
the behavior of estimates in either case, Ornstein-Uhlenbeck or Lognormal
process. Even if A,, is carefully chosen, there remain cases where the order
of consistency is significantly less than that of the exact maximum likelihood
estimate. In this section, we will show that bootstrap estimate attains the
same order of consistency as that of the exact maximum likelihood estimate
does. This result suggests that bootstrap estimate is quite promising even
when the exact solution of stochastic differential equation is unknown.

Bootstrap is a method of computation with the help of random number
generation. More precisely, the expectation E(T (X1, -+, X,,)) of a statistic
T(X1,--+,X,) is calculated or approximated through its mean with respect
to random numbers;

EY(T(X}, -, X)) X1 =21, -, Xpn = Zn), (2.10)
where (X7,---,X}) stands for random numbers which simulate observa-
tions (Xy,---,X,), and E* denotes a conditional expectation with respect

to (X3,---, X}) given (X; = xy,--+, X, = z,). Practically the bootstrap
expectation in (2.10) is replaced by an average

1
B £

Jj=1

T(z}9, ... D), (2.11)

1 'n

where (:r:}k(j), oo,z § = 1,---, B are sets of random numbers, that is,
realizations of (X;,---,X). The approximation error of (2.11) to (2.10)
almost surely goes to zero as B tends to infinity because of law of large
numbers. In many cases, approximation error of (2.10) to the expectation
E(T(Xy,---,X,)) also goes to zero as n tends to infinity, for example, in case

of Xq,---,X, being i.i.d..
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There are several ways of generating random numbers. Most popular
one is to generate random numbers based on empirical distribution of i.i.d.
observations xi,---,x,. Such a bootstrap is called non-parametric. Others
are making use of models available in some way. For example, if a regression
model is available for X7, - - -, X,, then we first estimate regression parameters
and generate X7,---, X based on random numbers which follow empirical
distribution of residuals. This type of bootstrap is called semi-parametric.
If a specific distribution, for example, normal distribution, is employed in
place of the empirical distribution of residuals, then such a method is called
parametric. Thus, various type of bootstrap estimates are available. How-
ever in this paper we will concentrate our attention on parametric bootstrap
estimate of likelihood function or of score function. Although how to choose
the number B of bootstrap samples is a crucial problem in practice, we leave
it for future investigation. We will discuss only (theoretical) bootstrap ex-
pectation in (2.10) and denote it simply as

E*(T(Xf> R vX;;))
by omitting the conditions. In other words, we assume that infinitely many
bootstrap samples are available and approximation error of (2.11) to (2.10)
is negligible. We first consider bootstrap estimate of conditional density
fo(- |ze_,) of X, given observations @y, - - -, 2,_,. Since we know that {X;}
satisfies the stochastic differential equation (1.1), we can sequentially gener-
ate random numbers according to Euler-Maruyama approximation,

X;i_l,k - chi—l,kfl + a(Xt):‘—l,k—lti“l’k_l : O)A”/N + b(X;L—l,k—lti_l’k_l : G)Wk’
k=1,---,N -1, (2.12)
where t;..; = ti41,0 < tq',_.]_71 < ti_.l’g < e, < ti——l,N—l < t; constitute a

uniform partition of [t;_1,%;). Variables {W},k =1,---, N — 1} denote inde-
pendent normal random numbers with mean 0 and variance A, /N.

. : . : . e
Let us denote the conditional density of X{ given X; =7

by f, g ) (7, %%, .)- The conditional density fgv) (+|z,_, ) of the bootstrap
for xy,,

+ a(X* ti—l,N—l : O)An/N -+ b(X* t’i—l,N—l : O)WN

ti—1,N—1 ti—1,N—1

X; =X

i—1,N—1

is then simplified because of the Markov property of generation mechanism
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(2.12) of random numbers. In fact, Pedersen(1995) showed that the equation

N—-1
N 1 * * 1 * * *
fé )(xlxtz—l) = /' : '/ H fé)(mti_l,k |$ti_1,k_1)fé)(mlxti_l’N__l)dxti—l,l SRR dxti—l,N—l

= {f(l) xlxtl LN 1)}

holds true and he also proved that fgv) (z|z¢,_,) converges to fg(z|zs_,) as
N tends to infinity.

However, to obtain the maximum likelihood estimate of parameter it is
necessary to estimate the score function in place of the log likelihood function.
The following theorem gives us a practical method of constructing a bootstrap
estimate of the score function.

Theorem 7

The score function based on observations, z;,, x:,, -+, T, 1S written as

{f‘”(

- Zrog g el >)} [B (1§ @l }| 219

0
—1 (0
801"()

= 2 |B

i=1

N—-1
i—1,N— 1) <Z 80 logf(l)( i 1,I§:|x:i—1,k——l)

for N > 2.
Proof

The score function can be written as

8 n n 0 f(N)(.’L't.|$t,_ )
=M (0) = log £8 (@i _,) = 3 2878 )
00 Z 00 ; fgv) o

Numerators on the right hand side of the equation above can be rewritten as

'i#l)
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* *
xti—l,N—1)d$ti71 1 dwtz 1,N—1

6 N-1 1) .
N 60/‘[11 f0 (m:i—l,klm;f:_Lk—l)fO (:Uti
k=

(1) 3 T
{f (‘sz ti—1,N— 1 80 H ti— l,klzz(i—l,k—l)

8
H (1) Ih 1k| Li1 k- 1)80f0 ($t1|xt1 1L,N— 1)}d$tl 11 dxtz 1L,N—1

I
—

8
= /{fg)(xtr mtl 1,N—1 8_0 fg)( ti— 1k|xtz 1,k— 1 H (1) ti 1klmtz 1,k— 1)

dx; - dxy

|z}

11N1 zlk lel) i—1,1 i—1,N—1

\...\,_z
»—l

=1 o (‘31
i—1,N - 1 2;:5.— ngo ‘/L.tz 1k‘ t1 1,k— 1)+80 ng (

Then, it is enough to note the equation (2.13) for denominators to prove
Theorem 7.

A practical bootstrap estimate of score function is obtained by replacing
bootstrap expectations in numerators and denominators on the right hand
side of (2.14) in Theorem 7 by averages with respect to B times random
number generations. Of course, to obtain actual parameter estimate it is
necessary to do a search for zeros of the score function. In due course,
various problems may arise in practice, for example, choice of initial value of
0, stopping rule for the search, efficient generation of bootstrap samples and
so on. We don’t discuss such practical problems in this paper. Instead, we
only evaluate order of consistency of 055 which is the solution of

a N _
5 (@) =0. (2.15)

2.3.1 Ornstein-Uhlenbeck Process
To obtain the solution of (2.15), noting that

1 (xti (]'_ﬁ‘A /N),Etl 1,N— 1)2
A 2027, /N }

(1) :
L. | Ty,
fo @l ) = (27A,/N)io
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we have

f(N) ('Tii xti_l)
x [ gl
= E {fg ( ti—1,N— 1)}
* !- 1 (.'L't B (]‘_/BAW«/N) T 1,N— 1)2
= E [————-1— exp — - .
(2rA,/N)zo 202A,/N
Since the conditional distribution of Xt |y, 8iven observations z;,_; is nor-

mal with the mean (1 — BA,/N)V- 1xt . and the variance o2 >0 (1 —
BA,/N)*A, /N from the generation mechanism (2.12) of random numbers,
the bootstrap expectation above is a convolution of two normal distributions.
Therefore it can be simplified as

2
" 1 (2 — (1 = BAL/N)Va,, )
fg (mtilmtq‘-—l) =-——1TXPy— ’
(2mnN)2 20N
where
A N-2
v = o= |14+ D (1— BA,/N)***
N k=0

,An1—(1—pA, /NN
‘N 1—(1-pBA,/N)?°

As a result, the bootstrap estimate of score function with respect to [ be-
comes

0 _
dﬂl” = -—;H—v- Zl (e, = (1= BAL/N)Vz,,_,) (1 = BAR/N 1y, A}

and the estimate BBS is the solution of

(1—,8A /N)N: Z? 1L, Tty

i= 1xt

On the other hand, the bootstrap estimate of 7y becomes

1 )
MBS = — ' ® {xti - (1- ﬂBSAn/N)Nmti—l}Q
=1
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Therefore, the bootstrap estimate of o2 is written as

6_2 :_]\L 1—(1~/éBSA7’L/N)2 ;5/
BS An 1— (1 - BBSAn/N)2N MLE-

The reader may feel strange that both the score function and all estimates
involve no bootstrap samples. This is because we assumed that infinitely
many bootstrap samples are available. In practice, the score function or the
estimate is more complicated. It is, however, enough to investigate behavior
of estimates g and 6% for the aim of this paper.

Theorem 8

The estimate (ps is consistent in one of the following cases.

Case 1. >0
If A,, converges to 0 or A,, is bounded but nA,, diverges to infinity,
then Bzg is consistent as far as N/A, diverges to infinity. The order
of consistency is min((nA,)z, N/A,). It is also consistent if /nd,A,
and N/A,, simultaneously diverge to infinity. The order of consistency
is then min(y/nd,A,, N/A,).

Case 2. =0 A
If nA,, diverges to infinity, then g is consistent. The order of consis-
. . B 3
tency is nA\,, if x4, is nonzero, otherwise (nA,,)z.

Case 3. <0
If nA,, diverges to infinity, BBS is consistent as far as N/A,, diverges to
infinity. The order of consistency is min(A,dr~", N/A,) if A, diverges
to infinity and min((A,/n)2d2™D, N/A,) otherwise.

Proof
The results follow from Table 3 if we note that

N

Bos == %

{1 — BAn/N — exp (—BA,/N) (g—” + 1>%} .

n
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2.3.2 Lognormal Process

We consider first bootstrap estimate of parameters of a transformed process
Y; = log X; which satisfies

1
dy, = (u = 5&) dt + 0dB,.

Then

* Ap\2
(1) * _ 1 . (yti YN T aTV_)

for @ = (o, 0?) with a = pu— (1/2)a?. The bootstrap expectation of (2.16) is
easily calculated by using the moment generating function of non-central
distribution and

1 (yti Yty — O[An)2 }

* (1) * —
E {fe (ytilyti—l,N—l)} o me){p {_ 20‘2An

Therefore the score functions become

a n
Bal;:[(e) = Z(yti — Yy — aAn)/O-Q

i=1

and

o ZN(O):i{_(yti—yti_l—aAn)2 1 }

o2 " = 20N, 202
We see that the solution coincides with the exact maximum likelihood esti-
mate given in Section 2.1.2.
3 Summary of the Results

We have investigated consistency of three types of estimates for two types of
processes. In this section we will summarize all results according to the type
of processes.
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3.1 Ornstein-Uhlenbeck process

The order of consistency is summarized in the following tables, where

. A if 2, =
a, = A,/log(1+1/(v/ndy,)), Bn :{ ?’)’LA”)% if z,, =0

o {\/ﬁAn if \/nA,, = o

min(/n, ay,) otherwise
and d, = exp(—BA,).

b

otherwise

In the following tables, as is defined in Section 2 D; to D, are the cases
where A,, — oo, A,, is bounded and bounded away from 0, A,, — 0 but
nA,, — oo and nA,, is bounded, respectively. Note that, even if the order
of consistency is given in the table, there are cases where the entry does not
give us any divergent sequence so that the estimate is not consistent for a
particular choice of A,, and N.
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Table 4. Order of Consistency of Estimates of (.

A, | Estimate B >0 B=0 B <0
D, ﬂ{t[LE Qn, Br A,ndt
Beu inconsistent 0B inconsistent
OBs min(y/nA,d,, N/A,) Bn min(A,d" !, N/A,)
Dy | Bure Vn Bn gl 1)
Bru inconsistent B inconsistent
Bas min(y/7, N) Bn min(n~ 22"V, N)
~ 1 1 i
D3 | Buire (nl,)? P (An/n)zdZm1)
& 1 -
BEU (nAn)2 /Gn And’g G
A . 1 s i
Bes min((nA,)z, N/A,) Bn min((A,/n)2d2™ Y N/A,)
Dy B N LE iconsistent inconsistent inconsistent
Bru inconsistent inconsistent inconsistent
Bps inconsistent inconsistent inconsistent
Table 5. Order of Consistency of Estimates of 02 when t, # 0.
A,, | Estimate G >0 B=0 B<0
Dy | Gyie En Vn min(y/n, d?1)
oy inconsistent N inconsistent
0% inconsistent | min(y/nA,, N) inconsistent
Dy | Giwe vn min(y/n, 5,) min(y/n, da™~Y //n)
% inconsistent Vn inconsistent
6% inconsistent | min(y/nA,, N) inconsistent
Ny 1 : i 1 o(n—
Ds | Gie (nAn)? min(yn, B,) | min(y/n, (An/n)2d;"Y)
G5 inconsistent V/n inconsistent
Ghe inconsistent | min(y/nA,, N) inconsistent
Dy G35 | inconsistent | inconsistent inconsistent
6%, | inconsistent N inconsistent
Ghg inconsistent | inconsistent inconsistent
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Table 6. Order of Consistency of Estimates of 0> when t, = 0.

A,, | Estimate 6>0 g =10 B <0

Dy | 6&hm En Vvn min(/7, d?!
o inconsistent Vn inconsistent

- i inconsistent inconsistent inconsistent

Dy | Giie vn i min(y/n, dy*Y //n)
o inconsistent NG inconsistent
85y inconsistent inconsistent inconsistent

Ds GhLE (”An)% Vil min(y/n, (A,/n)da")
g min(y/n,1/A,) vn min(y/n, 1/A,)
T ag min(1/A,, v/nA,, N) VA, min(1/A,, 2" /\/nA,, N)

D, OhriE inconsistent inconsistent inconsistent
54y min(4/n,1/A,) Vn min(y/n, 1/A,)
O inconsistent inconsistent inconsistent

3.2 Lognormal Process

The order of consistency in case of lognormal process is simple. It does not
depend on the value of parameters. The results are summarized in Table 7.

Table 7. Order of Consistency of Estimates of ;1 and 2.

A, Estimate Estimate

DyV Dy | fimiE Vn 0%LE Vn
fEy inconsistent G inconsistent
[iBs Vn O%s Vn

D3 \/D4 /l]&[LE (TLAn 5—]2WLE \/ﬁ

' fEy min(y/n, 1/A,) iy 1/A,
iiBs (n 03 Vn
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