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Abstract

The relative error of the approximation to Value-at-Risk is evaluated
when the conditional tail distribution is approximated by a generalized
Pareto distribution for a fixed threshold. The main concern is the uni-
formity of the convergence to zero as the threshold tends to infinity. It
is proved that the convergence is uniform if the underlying distribution
is in the Fréchet class or Weibull-type with index 1 in the Gumbel class
where the slowly varying factor has a positive constant as a limit. Other-
wise it is not uniform without limiting the range of values into an interval
depending on the threshold. A good example is the case of the t dis-
tribution. The relative approximation error uniformly converges to zero
since it belongs to the Fréchet class and the slowly varying factor has a
positive limiting constant. But it does not hold true in the case of the
normal distribution, although it is the limit of the t distribution when
the degree of freedom tend to infinity. This example indicates that the
approximation error is fragile and caution is necessary when the Value-
at-Risk is approximated by a generalized Pareto distribution as is in the
peaks-over-threshold (POT) method.

1 Introduction

One of the main objectives of financial risk management is to estimate a Value-
at-Risk (VaR); a high quantile q, := F~!(a) of a loss distribution F'. In recent
years, a method which applies extreme value theory, especially the so-called
peaks-over-threshold (POT) method, has attracted much attention in the VaR
estimation literature. This method is based on theorems derived in Pickands
(1975) and Balkema and de Haan (1974), stating that the tails of almost all
common distributions over some high threshold v can be approximated by the
generalized Pareto distribution. A weakness of their approach is that although
the approximation of the distribution function is guaranteed, that of the quantile
or VaR, is not guaranteed.
In general, we can write

F(z) = F(u) + F,(z — u)(1 — F(u)),

for > u, where Fy,(z) = (F(x+u) — F(u))/(1—F(u)). The generalized Pareto
approximation Fg of F' for a given threshold u > 0 and = > u is given by

Fa(x) = F(u) + Ge o(u) (x — u)(1 = F(u)),



where G¢ ,(x) is the generalized Pareto distribution function defined as

1—(L+¢&x/o) e €>0,

Geolr) = {1 —exp(—x/0), £E=0.

Such an approximation is justified as far as F' belongs to the maximum domain
of attraction (of the generalized extreme value distribution) with tail index ¢
(see Pickands (1975) or Balkema and de Haan (1974)). If a distribution function
F is twice differentiable, f(z) = F'(z) > 0 and

lim do(x)

T—00 T

=

where ¢(z) = (1 — F(x))/f(x), then F belongs to the maximum domain of

attraction with tail index £. This sufficient condition is the so-called von Mises’

condition (see, de Haan and Ferreira (2006)). We assume the condition through

this paper. We call the distributions which can be approximated by G¢ , with

& > 0 as the Fréchet class and that by G¢ , with £ = 0 as the Gumbel class.
An approximated quantile g, = Fi; '(a) is given by

T = u+g(5m{(%(uc>¥)_£_1}’ for € >0,

u — o(u)log (;zu‘;) : for &€ =0,

where F is the survival function of F. We can choose o(u) = F(u)/f(u) under
the von Mises’ condition (see, de Haan and Ferreira (2006)). The relative error
of this approximation is given by, with = ¢,

_u_ F(u F(z) 757 -
_ Yo~ 0o _ e ffﬂf(U){<F(u)) 1}’ for £>0,(1.1)

Cup 1= B B
do u | F(u) o F(x) S f =
1 x+xf(u)1g(F(u)), for € = 0. (1.2)

for > u. The convergence of this relative error already has been investigated in
Beirlant et al. (2003). However, their asymptotic results are in terms of & when
u is chosen as a function u, of « such that lim, 1 F(us) = 1, i.e. they have
considered pointwise convergence of €, 4, as a tends to one. Therefore, we
can not see how the convergence holds true for g, > u when u tends to infinity.
Also, from practical point of view, the threshold w comes first. Therefore, the
asymptotic results in terms of « is not so valuable in practice since F' is not
exactly known, which links v and a.

In this paper, we consider the convergence of the supremum of the relative
error

Sy(u) == sup |eyql
z€(u,V(u))



when v tends to infinity, where the function V' (u) : R +— (u, oo] is a suitably
chosen upper bound for the quantile z. Note that the case V(u) = oo is included
in the following propositions and theorems. We will discuss the convergences
class by class of the maximum domain of attraction.

2 Relative Error of the Generalized Pareto Ap-
proximation to VaR

2.1 In Case of the Fréchet Class

Distribution in the Fréchet class with tail index £ > 0 has the representation

F(z) =2 Y¢L(x), (2.1)

where L(z) is some slowly varying function, i.e.

lim L{tz)

T—00 L(J;)

=1 (2.2)
for any ¢t > 0 (see, e.g. Embrechts et al. (2005)). We hereafter call L(z) a slowly
varying factor of F.

Proposition 2.1. Suppose that F is a distribution function in the Fréchet
class with tail index € > 0 and has a slowly varying factor L. For any V(u),
the convergence

lim Sy (u) =0 (2.3)

U—r 00

18 equivalent to

4
lim sup 1-— ( L) ) = (2.4)
U0 e (1,V (u) /u) L(wu)
Proof. By using the representation in (2.1), we have from (1.1)
_ L(u) \*
u,wu — 1-—- - M -1
fu, v Ew v L(wu) ’
where w = x/u and p(u) = F(u)/(uf(u)). Note that
( L(u) )5 B Eeuwu + (1 —w™") (p(u) =€)
sup 1-— = sup
we(1,V (u)/u) L(wu) we(1,V (u)/u) o(u)
1
S N sup fEu,wu +|1- w_l |90(u _E
(W) we(1,v(u)/u) 8 | ’ ‘ )=l
S (w) + o) — ]
S Su(u) 4+ —— lo(u) —
= el o)



for any w > 0. Then the convergence in (2.4) follows from (2.3) since the von
Mises’ condition becomes simpler

lim p(x) =¢ (2.5)

T—r 00

in case of the Fréchet class.
The converse is true since

o) (| (L \* YY)
plu) L) \°|, [E = o(u)
= 3 wE(l,Vl(:)u)/u) ! <L(wu)> * 3

O

Proposition 2.1 shows that it is enough to check the convergence in (2.4).
The following theorem gives us a choice of V(u) for the convergence.

Theorem 2.2. Suppose that F' is a distribution in the Fréchet class with tail
index € > 0. If
V(u)

lim sup < 00, (2.6)
U— 00 u
then

U— 00

Proof. There exists some M > 0 and ug > 0 such that

%
¥<Mforu>uo,

under the condition(2.6). Then, the equivalent condition (2.4) holds since we

have
INEIORND EIORY
L(wu) - L(wu)
for any u > ug and the right side converges to zero as u tends to infinity by the
Karamata’s convergences theorem (see, e.g. Bingham et al. (1987)). O

sup
we(1,V(u)/u)

sup
we[l,M]

)

Theorem 2.2 gives us a sufficient condition for the convergence of the relative
approximation error, but not necessarily sufficient as is seen from the following
example.

Example 2.3. We can find a strictly increasing sequence {u, }nen such that

¢(u,n) < 1/n for u > u, where
NEZORY
v (z) |

((u,n) = sup
we(l,n+1)




This is because ((u,n) converges to zero as u tends to infinity for a fixed n by
the Karamata’s convergence theorem. If we define V' (u) as

V() %u for 0 < u < uyq,
u) =
(n+Du  foru, <u<uptr, n=1,2...,

then V(u)/u diverges to infinity together with u but the condition (2.4) is sat-
isfied.

It is also possible to assure the convergence of Sy (u) by specifying the be-
haviour of L(z).

Theorem 2.4. Suppose that F' is a distribution in the Fréchet class with tail
index € > 0 and has a slowly varying factor L. If L(x) converges to | € (0, 00)
as x tends to infinity, then

lim Sv(u) =0

U—r 00

for any V(u) including V(u) = co.
Proof. Tt is clear from the form of (2.4). O

There would be no simple answer to the convergence of Sy (u) when L(x)
does not converge to a positive constant. However it is clear that it does not
converge to zero as far as L(z) converges to zero or diverges to infinity in case
of V(u) = 0.

Proposition 2.1 can be rewritten in terms of the density function f of F. It
is known that the density function is written as

fla)=a e Ly (@)

with a slowly varying function L; as far as F' is differentiable and belongs to
the Fréchet class with tail index & > 0 (see, e.g. Kliippelberg et al. (1997)).

Proposition 2.5. Suppose that F' is a distribution function in the Fréchet class
with tail index § > 0 and has a density f which has a slowly varying factor Ly.
For any V (u), the convergence

lim Sv(u) =0

U—r 00

s equivalent to

lim sup =0. (2.7)

U0 we(L,V (u)/u)

N EZiC) :
Ly (wu)
The proof is placed in Appendix. Theorem 2.4 is now rewritten as the
following theorem in terms of the slowly varying factor L.




Theorem 2.6. Suppose that F is a distribution function in the Fréchet class
with tail index & > 0 and has a density f which has a slowly varying factor L.
If Ly(z) converges tol € (0,00) as x tends to infinity, then

lim Sv(’u) =0

UuU—» 00
for any V(u) including V(u) = 0.
Proof. The proof is same as that of Theorem 2.4. O

By using this theorem, we can derive a more explicit condition for the choice
of V(u) for known densities. We will see it in the following examples.

Example 2.7 (Log-gamma). The slowly varying factor L; of log-gamma den-
sity function is given by

ab

Ly(z) = m(loga:)b_l, (x>1; a>0, b>0),

since the density function is given by
ab b—1 1
fz) = o) (logz)™ " ™77,

and, as is known, log-gamma distribution belongs to the Fréchet class with tail
index 1/a. Therefore, the relative error Sy (u) for any V' converges to zero as u
tends to infinity when 8 = 1 by Theorem 2.6. When 0 < b < 1 or b > 1, the
relative error converges to zero as far as V(u) has a representation

V(u) = u™™, where r(u) \ 1 as u — oc.
This is because that we have

" (LZJESJ))% = ‘1 _ (g‘%)@—l)/a |

and then a necessary and sufficient condition for the convergence is

sup
we(1,V(u)/u)

lim 7logu =1
u—oo logV(u)

by Proposition 2.1.

Example 2.8 (t distribution). In case of t distribution with the degree of
freedom v, the slowly varying factor L; is given by

(w4 1)/2) (1 1\ WY .
Lf(l')—lﬂr]-_‘(’//2)<‘132+y> ,((EER,I/>O),



since the density function is giver by

Kv+1)/2) <1 N x2>_(”+1)/27

fla) = vrl'(v/2) v

v

and the t distribution is element of the Fréchet class with tail index 1/v. The
relative approximation error Sy (u) with V' = oo converges to zero as u tends to
infinity, since the Ly(z) has a positive limiting constant as x tends to infinity.

The same discussion follows as in Example 2.8 for inverse-gamma, F, Cauchy
distributions. Therefore, it is free to use the generalized Pareto approximation
to log-gamma with b = 1, t, inverse-gamma, F or Cauchy distributions.

2.2 In Case of the Gumbel Class

We investigate the relative approximation error in case of the Gumbel class
distributions. We restrict our attention into a sub-class, Weibull-type of the
Gumbel distributions.

Definition 2.9 (Weibull-type). F is a distribution function of Weibull-type
with index B > 0 if F' is written as

F(z) = exp (—xﬁL(x)) ,

with a differentiable slowly varying function L(x) which satisfies the following
condition,

o lim, % =0 in case of B >0,
e lim, ,o, L(xz) =00 in case of f =0,
wehere L' is derivative of L.

This class includes, for instance, normal distribution (§ = 2), Gamma dis-
tribution (8 = 1) and log-normal distribution (8 = 0).
From the form of density function of Weibull-type distribution

) = (BxP~1L(z) 4+ 2P L' (z)) exp (-2 L(z)) B8 >0,
L'(z) exp(—L(x)), B =0,

the relative approximation error (1.2) can be written as, with w = z/u,
L(u) — wP L(wu)
BL(u) + ul!(u) ’

1 L(u) — L(wu)
ul/(u)

l—w ' +w? for 8 > 0, (2.8)

Eu,wu =

1—w 4w for B=0. (2.9)



Proposition 2.10. Suppose that F is a Weibull-type distribution with index
B >0 and has a slowly varying factor L. For any V (u), the convergence

lim Sy (u) =0 (2.10)

U—r 00

s equivalent to

1-8 _; w ! L(wu)

g " 3 Llu)

Proof. The convergence in (2.11) follows from (2.10) since, with p(u) = uL'(u)/L(u),

lim sup 1+

= 0. (2.11)
U—00 we(1,V(u)/u)

1+ wt =

sup
we(1,V (u)/u)

< [[(159).,

we(1,V(u)/u)

| (u)| | (u)]
<(1+ 3 >Sv(u)+ 3

from (2.8) and we have lim,_, o ¢(u) = 0 by Definition 2.9.
In a similar way, the converse can be proved since

-t -B B=1 L(wu)
S |4 2w H1 A S
viw < ‘ * B we(l?gl()u)/u) * g " B L(u)
e
p(u) - 1-6 1w’ Lww)| | |e(u)
= ‘1 * B Le(fgl()u)/u) b g " B L(u) " 5 1 '

O

2.2.1 Weibull type with =1

The following theorems give us a sufficient condition for the convergence of the
relative error. These conditions are same as in the case of the Fréchet class.

Theorem 2.11. Suppose that F is a Weibull-type distribution with index =1
and has a slowly varying factor L. If

1%
lim sup () < o0, (2.12)
U—00 u
then
lim Sv(u> =0.
uU—r 00



Proof. From (2.11), the equivalent condition is

L(wu)

" T

lim sup
U—00 we(1,V(u)/u)

)

in case of 8 = 1. It holds true for any V(u) which satisfies the condition (2.12),
by the Karamata’s convergence theorem as in the proof of Theorem 2.2. O

Note that this is only a sufficient condition as same as in Example 2.3.

Theorem 2.12. Suppose that F' is a Weibull-type distribution with index § =1
and the slowly varying factor L. If the slowly varying factor L(xz) converges to
1 € (0,00) as x tends to infinity, then the equivalent condition (2.11) holds true
for any V(u).

Proof. The proof is same as in Theorem 2.4 with £ = 1. O

2.2.2 Weibull type with 5 # 1

In this case, we can derive a necessary and sufficient condition for the conver-
gence of the relative error to zero. The uniform convergence is assured only in
the neighborhood of the threshold u, while the convergence of S.,(u) is possible
in other case.

Theorem 2.13. Suppose that F is a Weibull-type distribution with index f # 1
and has a slowly varying factor L. For any V(u),

Jim Sy (u) =0,

if and only if
lim Vv
u—00 U

Proof. We have to distinguish the case 0 < 8 # 1 and the case g = 0.
1. In case of 0 < 8 # 1.

First, we show that the convergence of Sy (u) to zero never holds as u tends
to infinity if limsup,,_,., V(u)/u > 1. For all u,, > 0 (n = 1,2...) with
limy, s 00 Uy, = 00, there exists some w), > u, and d,, > 0 with lim,,_,, 6, =
0 > 0 such that

=1. (2.13)

V *
@ > 140,
un
Then, for each n,

1-8 1 lwﬁ_lL(wu;)

sup 14+ —w ”
we(1,V(u¥)/uk) /6 /8 L(un)
1-06, 1 L(wu
> sup 1+ b wl — Zwfl (wi")
we(1,144,) B B L(uy,)

L(u¥)

n

>




The last expression converges to

1-p 1
I+ —2140) =S+~
g 5

as n increases, which is strictly positive by the Karamata’s convergence
theorem. From Proposition 2.10, Sy (u) never converges to zero as u tends
to infinity.
To complete the proof, we have only to show that if lim, o V(u)/u =1
then Sy (u) converges to zero as u tends to infinity. From Proposition
2.10, it is enough to show

1-— 1 L
lim sup 1+ Jw_l — —wPft (wu) =0.
U0 e (1,V (u) 1) B B L(u)
Note that
1-8 1 1 5 L(wu)
sup 1+ —w  ——=w
we(1,V(u)/u) 6 B L(’LL)
1-8 4 1 54 1 54 ( L(wu)>H
= sup 1+ —w  —=w + —w 1-—
we 1,V (u)/u) H B B B L(u)

1+1Eﬁv?u>‘;<v?u>>lﬂ

() )
p w sup .
B \we@,v(u)/w) we(1,V () /u)

Each terms in the last expression converges to zero as u tends to infinity by
the Karamata’s convergence theorem as far as limsup,_, . V(u)/u < oo
and the condition (2.13) holds.

L(wu)

' Iw

. In case of 8 =0.
We have that

1—w!_ wflL(wu) — L(u)

sup

we(1,V () /u) ull (u)
L — L

< sup [|1—w1—wllogw|+'(wu)/(u)—logwu

we(1,V (u)/u) ull(u)

u u V(u) L(wu) — L(u)
=11- — log( )‘+ sup = 7 _loguwl|,
Vi(u)  V(u) u we(1,V(u)/u) ul!(u)

from (2.9). For the second term in the last expression, we have

D)

lim

L(wu) — L(u) - Y L' (tu)
uU—00 uL’(u) o u—>oo/1

10



and

L/
lim 20 _ 1
u—ro0 L’(u)

from (2.2). Therefore, the relative error Sy (u) converges to zero as u
tends to infinity if the condition (2.13) holds.

Because of the same argument in the case 0 < 8 # 1, the convergence of
Sy (u) to zero never holds if lim, o0 V' (u)/u > 1.

O

2.3 Comparison between t and normal distributions

It is interesting to compare t distribution and normal distribution. As is seen in
Example 2.8, t distribution belongs to the Fréchet class and normal distribution
is a Weibull-type distribution with 5 = 2. Therefore, the uniform convergence
is assured for any choice of V'(u) for t distribution, but it does not holds true for
normal distribution. We will see what happens when the degree of freedom of
t distribution tend to infinity. To do this, we have to come back to Proposition
2.5. The convergence of Sy (u) to zero is equivalent to

1‘@ﬁﬂﬂw

lim sup =0,

YT we(1,V (u)/u)

where
L = D2 (11 e
=" forbw)2) 2 " v '
Then, we get
L 1/1/ 1 2 92 _1 1/2+2V
sup 1_( f(u)> — 1_(%)
we(1,V(u)/u) Lf(wu) we(1,V (u)/u) w* + wuv

Since the right hand side converges to 1 —u/V (u) as v tends to infinity, the
condition v
lim (w)

u—oo 1Y

=1

follows as v tends to infinity.

We have seen that uniform convergence of the relative error is not always
assured. The convergence heavily depends on the shape of the distribution F'(x),
particularly its slowly varying factor L(x). In the next section, we will see how
well the approximation holds true in practice by some of computer simulations.
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3 Numerical Result

In this section we report the results of Monte Carlo simulations. We have gen-
erated 100000 i.i.d. random numbers in each experiment. In the following, each
panel show a Quantile-Quantile plot of the GPD quantile against the sample
quantile of the excess distribution.

s
@ g |(b) )
g
s g
g B =
s e g
- - -
o 50 100 200 o 50 100 200 o 50 100 150 200
Q 4 a [m)
5
U £ =)
@ o
= =
s -
B
.
@ o o
0O 2 4 6 8 10 14 0O 2 4 6 8 10 14 o 2 4 6 8 10
S
(&) 5 () .
s - -
' I
«© <
- «
o] 2 4 6 8 o] 2 4 6 0O 1 2 3 4 5 6
0 Quantile of Excess Distribution

Figure 1: Quantile-Quantile plots in case of the t distribution.

Figure 1 shows the results for the case of t distributions. The parameters
of the GPD are taken to be & = 1/v and o = (1 — t,(u))/t,,(u) for degrees
of freedom v, where t, is the distribution function of the t distribution. The
degrees of freedom are the same for each row of the panel matrix (2, 5 and 7
respectively from top to bottom). The threshold is the same for each column
(t;1(0.9), t;1(0.95) and t,,1(0.99) respectively from left to right). We can see
from the panels that the approximation works well for v small, but does not
work well if v is large and w is small.
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Figure 2: Quantile-Quantile plots in case of the normal distribution.

Figure 2 shows the results for the case of the normal distribution. The
parameters of the GPD are taken to be £ = 0 and 0 = (1 — ®(u))/P'(u)
where ® is the normal distribution function. The threshold u is taken to be
®=1(0.9), ®71(0.95), ®-1(0.97) and ®1(0.99) respectively from (a) to (d).
The approximation does not work well for any u, except in the neighborhood of
u. These results are consistent with the theoretical results given in Section 2.

4 Concluding Remarks

Our result shows that the generalized Pareto approximation does not always
provide a good estimate of the quantile x = F~!(a), > u, although it gives a
good approximation to the excess distribution function F,,(x —u) itself. Caution
is therefore needed in applications. It is safe to restrict attention to u < z <
V(u) such that lim, o V(u)/u = 1. Therefore, a practical procedure of VaR,,
estimation is to find an appropriate u where there are significant number of
observations on the left but not so many on the right.
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Appendix

Proof of Proposition 2.5
By the von Mises’ condition (2.5), for any € € (0,£) there exists some ug > 0
such that

’ L(u)

L) ’5‘ <

for any u > ug. Then, we have

o L(w)/Ly(w) \*_ | _
S we(fvl(ou)/u) (L(wu)/Lf(wu)> H=0
s L(u)/Ly(u)
w€(1,VFu)/u) L(wu)/L¢(wu) 1‘
su |L(u)/Ly(u) =& + |L(wu)/Li(wu) ¢ 2e
= we(l,vl(ou)/u) [ L(wu)/L¢(wu) ] < E—¢’

for any u > wug. Therefore, the equivalent condition (2.4) in Proposition 2.1
follows from (2.7) since

(2 )g

(g
(

sup
we(1,V(u)/u)

= sup
we(1,V(u)/u)

< swp
we(1,V (u)/u)

+ sup
we(1,V (u)/u)

The converse holds true since
1 Ls() ¢
Ly (wu)
EIORY
L(wu)

L(wu)/Ly(wu) \*
( L(w)/L(@) > '

sup
we(1,V (u)/u)

< sw
we(1,V(u)/u)

+ sup

) ( L(u) )5
up .
we(1,V (u)/u) we(u,v () \ L(wu)
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